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We present computer-assisted methods for analyzing stochastic models of gene regulatory networks.
The main idea that underlies this equation-free analysis is the design and execution of appropriately
initialized short bursts of stochastic simulations; the results of these are processed to estimate
coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using
a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy
� and of a state-dependent effective diffusion coefficient D that characterize an unavailable
effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques
with continuation methods for performing a form of stochastic “bifurcation analysis”; estimation of
mean switching times in the case of a bistable switch is also implemented in this equation-free
context. The accuracy of our methods is tested by direct comparison with long-time stochastic
simulations. This type of equation-free analysis appears to be a promising approach to computing
features of the long-time, coarse-grained behavior of certain classes of complex stochastic models
of gene regulatory networks, circumventing the need for long Monte Carlo simulations.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2149854�
I. INTRODUCTION

Various ways to model gene regulatory networks exist,
ranging from logical �Boolean� to stochastic �Monte Carlo
methods� or deterministic �ordinary differential equations�
models �for recent reviews, see Refs. 1–3�. Each modeling
approach has its advantages and disadvantages. One advan-
tage of stochastic modeling is that it takes into account fluc-
tuations due to the inherently random nature of biochemical
reactions. This intrinsic noise gives rise to significant effects
when either the molecular abundances of protein or mRNA
molecules are small or the kinetics of the transitions between
the chemical states of the promoter are slow.3,4

The established approach for stochastic modeling of spa-
tially homogeneous chemical systems was introduced by
Gillespie.5 The Gillespie stochastic simulation algorithm
�SSA� is based on repeatedly answering two questions: when
does the next chemical reaction occur and what kind of re-
action is it? Gillespie5 derived a simple way to answer these
two questions that reduces the problem to a continuous-time
discrete space Markov process.

The SSA generates exact sample paths of the stochastic
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process and, for sufficiently large networks, it is computa-
tionally more efficient than solving the chemical master
equation. However, the large size of naturally occurring gene
regulatory networks makes even the SSA computationally
intensive and practically impossible to use for computing the
long-time behavior of the network. Consequently, an impor-
tant restriction of stochastic computations for many networks
of interest is that we can efficiently run stochastic Gillespie-
based simulators for short times only. It is therefore natural
to look for computational methods that use only short-time
simulations �and as few of these as necessary� to compute the
required information for the system. Such a computer-
assisted approach is presented in this paper.

Model reduction often provides a natural path to efficient
simulation of a complicated model. As in other branches of
physical modeling, separation of time scales can lead to suc-
cessful model reduction in gene regulatory network model-
ing. Separation of time scales is frequently present in this
context because synthesis and degradation of new proteins
and transcripts usually occur on a slower time scale than
processes that change the chemical state of proteins �e.g.,
multimerization, protein/DNA interactions, and phosphoryla-
tion�. Theoretical methods for stochastic model reduction
that take advantage of separation of time scales are being

developed �e.g., Refs. 4 and 6–8�. Analytical reduction tech-
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niques assume that fast variables are in quasisteady state
with respect to the remaining slow variables. If the quasi-
steady-state distributions conditioned on the slow variables
can be determined, then they can be used to eliminate the
fast variables.

Our approach is also based on �and takes advantage of�
the separation of time scales and the approximation �compu-
tationally, on the fly� of quasisteady marginal distributions
�conditioned on the slow variables�. The main feature of our
approach, as will become apparent through its description
and illustration, is that we do not “first reduce and then simu-
late the reduced model”; our methods come in the form of
wrappers around a black box dynamic simulator and could
equally well be applied to the most detailed stochastic ver-
sion of the network model or to its best explicit reduction
already available. In our approach, results about the long-
term dynamic behavior of a stochastic simulator do not come
from long-term simulation; they come from the design, ex-
ecution, and processing of the results of “intelligently de-
signed” short bursts of direct dynamic simulation.

We believe it is useful to draw here an analogy with the
study of nonlinear dynamics in systems of ordinary differen-
tial equations �ODEs�. Long-term information in the form of
detailed bifurcation diagrams can be obtained from long dy-
namic integration; yet the same information is much more
systematically and economically obtained through different
algorithms using the same model: bifurcation, stability, and
continuation methods. It is this alternative to direct, long-
term stochastic simulation �whether with the full detailed
network model or with any good analytical reduction of it�
that our approach makes available to the modeler. Ours is a
“design of computational experiments” approach; it is guided
by model reduction, but a reduced model is never explicitly
obtained.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the genetic toggle switch as a simple
model to illustrate our methods, and we specify the main
questions that one would like to answer with these tech-
niques. In Sec. III, we present the general mathematical
framework and main ideas of equation-free analysis.9–13 In
Sec. IV, we present an analysis of a deterministic model of
the genetic toggle switch to provide insight into this system.
We also introduce several stochastic models of increasing
complexity that are used to illustrate equation-free analysis.
In Sec. V, we compute the effective free energies and the
associated stationary distributions for the stochastic models
described in Sec. IV. Equation-free bifurcation analysis is
then presented, and, in bistable cases, the mean first passage
times for the system to switch between apparent stable fixed
points are computed. We end with a discussion of the
equation-free approach, its strengths, weaknesses, relations
to other current methods for the acceleration of SSA-type
simulations �e.g., Refs. 4, 6–8, and 14�, and its possible ex-
tensions in Sec. VI. In particular, we will discuss the appli-
cability of our methods to more complicated gene regulatory

networks.
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II. MODEL DESCRIPTION

Our illustrative example is a two-gene network in which
each protein represses the transcription of the other gene
�mutual repression�. This type of system has been engineered
in E. coli and is often referred to as a genetic toggle
switch.15,16 The advantage of this simple system is that it
allows us to test the accuracy of equation-free methods by
direct comparisons with results from long-time stochastic
simulations. In Sec. VI, we discuss the applicability of our
methods to more complex problems where long direct sto-
chastic simulation is impossible and the accuracy must be
checked by online a posteriori error estimates.

A simple version of the genetic toggle switch is sche-
matically drawn in Fig. 1. The system contains two proteins
P1 and P2. The production of P1 �P2� depends on the chemi-
cal state of the upstream operator O1 �O2�. If O1 is empty
then P1 is produced at the rate �1 and if O1 is occupied by a
dimer of P2, then protein P1 is produced at a rate �1��1.
Similarly, if O2 is empty then P2 is produced at the rate �2

and if O2 is occupied by a dimer of P1, then protein P2 is
produced at a rate �2��2. Note that for simplicity, transcrip-
tion and translation are described by a single rate constant.
The biochemical reactions and rate constants that correspond
to the processes shown in Fig. 1 are

� �
�1

�1O1+�1P2P2O1

P1, �2.1�

� �
�2

�2O2+�2P1P1O2

P2, �2.2�

P1 + P1�
k−1

k1

P1P1, �2.3�

P2 + P2�
k−2

k2

P2P2, �2.4�

P2P2 + O1�
k−o1

ko1

P2P2O1, �2.5�

P1P1 + O2�
k−o2

ko2

P1P1O2, �2.6�

where the overbars denote complexes. Equation �2.1� de-

FIG. 1. A schematic diagram of the genetic toggle switch.
scribes production and degradation of protein P1, Eq. �2.2�
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describes production and degradation of protein P2, Eqs.
�2.3� and �2.4� are dimerization reactions, and Eqs. �2.5� and
�2.6� represent the binding and dissociation of the dimer and
DNA.

Single cell fluorescence measurements can be used to
measure intercellular variability in protein expression levels.
Therefore it is important to have efficient methods for com-
puting the steady-state distribution of protein abundances
from stochastic models similar to the one defined by
�2.1�–�2.6�. For moderately complex systems using long-
time Monte Carlo simulations quickly becomes computation-
ally prohibitive. We will illustrate how equation-free analysis
can overcome this difficulty by accelerating the exploration
of certain features of the long-term dynamics of the stochas-
tic simulation. For certain values of the model parameters,
the genetic toggle switch is bistable. If the system is de-
scribed in terms of ODEs for the protein concentrations, then
standard bifurcation analysis �numerical continuation meth-
ods� can be applied to determine the regions of parameter
space in which bistability occurs. Using the model described
by �2.1�–�2.6� as an example, we show how to extend these
techniques to stochastic models. An important quantity that
characterizes the dynamics of bistable stochastic systems is
the average time for spontaneous transitions between stable
steady states to occur. We will illustrate how this mean first
passage time can be computed by using only short-time
simulations.

III. EQUATION-FREE ANALYSIS: MATHEMATICAL
FRAMEWORK

Let us suppose that we have a well-stirred mixture of
chemically reacting species; our main assumption is that the
evolution of the system can be described in terms of a single,
slowly evolving random variable Q �the approach carries
through for the case of a small number of slow variables, but
in this paper we will focus on the single slow variable case�.
Q might be the concentration of one of the chemical species
or some function of the concentrations. Let R denote a vector
of the other �fast, “slaved” system variables�. Our assump-
tion implies that the evolution of the system can be approxi-
mately described by the time-dependent probability density
function f�q , t� for the values q of the slow variable Q that
evolves according to the following effective Fokker-Planck
equation:17

� f

�t
=

�

�q
� �

�q
�D�q�f�q,t�� − V�q�f�q,t�� . �3.1�

If the effective drift V�q� and diffusion coefficient D�q�
could be explicitly written down as functions of q, then �3.1�
could be used to compute interesting properties of the system
�e.g., the steady-state distribution�. Note that in addition to
the assumption of a single slow variable, the validity of Eq.
�3.1� requires sufficiently large molecular abundances and
sufficiently fast chemical kinetics for the binding and release
of the dimers from the operator sites on the DNA.4,15 In the
limit of fast chemical kinetics these binary transitions at the

operator become temporally self-averaging. Assuming that
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�3.1� provides a good approximation, we make use of the
following formulas for the drift and diffusion
coefficient13,18–20

V�q� = lim
�t→0

�Q�t + �t� − q�Q�t� = q	
�t

, �3.2�

D�q� =
1

2
lim

�t→0

��Q�t + �t� − q�2�Q�t� = q	
�t

. �3.3�

As described below, estimates of these two quantities can be
found by using short-time bursts of appropriately initialized
stochastic simulations. The steady solution of �3.1� is propor-
tional to exp�−���q��, where the effective free energy ��q�
is defined as

��q�
kBT


 ���q� = − �
0

q V�q��
D�q��

dq� + ln D�q� + constant.

�3.4�

Consequently, computing the effective free energy and the
steady-state probability distribution can also be accom-
plished without the need for long-time stochastic simula-
tions.

A procedure for computationally estimating V�q� and
D�q� is as follows:

�A� Given Q=q, approximate the conditional density
P�r �Q=q� for the fast variables R. Details of this
preparatory step are given below.

�B� Use P�r �Q=q� from step �A� to determine appropri-
ate initial conditions for the short simulations and
run multiple realizations for time �t. Use the results
of these simulations and the definitions �3.2� and
�3.3� to estimate the average velocity V�q� and ef-
fective diffusion coefficient D�q�.

�C� Repeat steps �A� and �B� for sufficiently many val-
ues of q and then compute ��q� using formula �3.4�
and numerical quadrature.

A very important feature of this algorithm is that it is trivially
parallelizable �different realizations of short simulations
starting at the “same” q as well as simulation realizations
starting at different q values can be run independently on
multiple processors�.

In order to use the algorithms �A�–�C�, we have to
specify how step �A� is performed. There are several com-
putational options to approximate the conditional density
P�r �Q=q�. The simplest approximation is to estimate
�through numerical experiments� the conditional mean
�R �Q=q	 and approximate P�r �Q=q� as a Dirac delta func-
tion ��r− �R �Q=q	�. Then step �A� reads as follows:

�1� Given Q=q, pick an initial guess for the conditional
mean of R. Denote the initial guess as �R�0�	. Run
multiple realizations for a short time �t and compute
�R��t�	. This procedure defines the mapping
�R�0�	→ �R��t�	. Find the steady state of this map-
ping using standard numerical methods. The steady

state is the required conditional average �R �Q=q	.
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Initialize R�0� as �R �Q=q	 in all realizations in part
�B� of the algorithm.

Another option is to approximate P�r �Q=q� as a distribution
characterized by a few parameters, e.g., as a Gaussian distri-
bution with mean � and variance �. This can be done as
follows:

�2� Given Q=q, pick initial guesses for the mean ��0�
and variance ��0� of the conditional distribution
function P�r �Q=q�. Use this distribution to generate
many realizations of R�0�. Using these realizations
as initial conditions, run stochastic simulations for a
short time �t and compute R��t�. Computing the
mean and variance of R��t�, we obtain the mapping
���0� ,��0��→ ����t� ,���t��. Next use standard
numerical methods to find the steady state �� ,�� of
this mapping and approximate P�r �Q=q� as a
Gaussian distribution with mean � and variance �.

The conditional density P�r �Q=q� can also be approximated
by other basis functions. It is straightforward to generalize
�1� or �2� to such a case. The better the approximation of
P�r �Q=q� we have, the shorter the time step �t required in
step �B� to achieve the same accuracy. So, a better approxi-
mation of P�r �Q=q� in step �A� decreases the computational
intensity of step �B�. On the other hand, step �A� is more
computationally intensive if we want to obtain a better ap-
proximation of P�r �Q=q�. One possibility for generating a
better approximation of P�r �Q=q� is to use a “run-and-
reset” procedure as was done in Ref. 10. This is accom-
plished as follows:

�3� Given Q=q, initialize the other variables R
R�0�
of the system. Run stochastic simulations for the
short time �t. Then reset the value of Q��t� to its
original value q keeping R unchanged. Repeat this
procedure for many time steps and compute the con-
ditional density P�r �Q=q� as a histogram of the re-
corded values of R.

Approach �3� attempts to compute the P�r �Q=q� effectively
by successive substitution, without resorting to numerical al-
gorithms of the Newton-Raphson-type for locating fixed
points of mappings; we will return to this latter issue in the
Discussion section. In our illustrative computations in Sec.
V, we use step �A� in form �1� or �3� for the simple stochastic
models described below. Both give good results for our illus-
trative example. Since �1� works, there is no need to use �2�
or higher-order approximations. For some stochastic simula-
tions of our model problem, we also use slightly modified
versions of method �1� or �3�, as will be described in Sec. V.

A. Bifurcations

In deterministic problems, we often summarize the para-
metric dependence of the long-term dynamics in terms of
bifurcation diagrams; for example, we may plot the steady
states of a deterministic set of ODEs as a function of a dis-

tinguished bifurcation parameter. Several excellent continu-
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ation methods have been developed, implemented, and made
available for this purpose over the years, such as AUTO.21,22

Here we illustrate how these methods can be extended to
stochastic models.9,11,20,23,24 We assume, as above, that we
have a stochastic problem that can be effectively described by
a single variable Q. Let � be the bifurcation parameter. The
first two steps in the algorithm are as follows:

�i� Given Q=q and the value of the bifurcation param-
eter �, compute the conditional density P�r �Q
=q� using step �A� of the previous algorithm.

�ii� Using P�r �Q=q� from step �i� to determine the
initial conditions, run multiple stochastic simula-
tions for a short time �t and compute the condi-
tional average �Q��t� �Q�0�=q	.

Steps �i� and �ii� define the mapping �Q�0� ,��→ �Q��t�	. We
denote this mapping as F, i.e., F�Q ,��= �Q��t�	. Our goal is
to track the fixed points of F �i.e., F�Q ,��=Q� as the bifur-
cation parameter � is varied. To do this, we first use a
Newton-Raphson algorithm to find two fixed points �Q1 ,�1�
and �Q2 ,�2� which are sufficiently close to each other �note
that one can estimate the derivative of F�Q ,�� numerically
by evaluating F�Q ,�� at different points�. Then, in a param-
eter continuation context, steps are not taken directly in the
parameter but in �pseudo�arclength along the solution branch
in Q�� space21 �in order to allow the computation to auto-
matically “go around” turning points�. A small increment � is
chosen �which can be modified adaptively during the com-
putation�, and we find the next steady state Q, as well as the
corresponding parameter value � at distance approximately
�� on the solution branch from the last solution point by
solving the augmented steady-state system of equations

Q − F�Q,�� = 0,

�Q − Q2��Q2 − Q1� + �� − �2���2 − �1� − � = 0. �3.5�

To find the solution of �3.5�, we estimate the Jacobian nu-
merically by evaluating F�Q ,�� at several points and then
use a Newton-Raphson algorithm. When the number of vari-
ables starts becoming large, matrix-free methods of iterative
numerical linear algebra �such as Broyden or Newton-Krylov
GMRES �Ref. 25�� can be used to solve for the fixed point, as
opposed to full numerical Jacobian estimation. The fixed
points computed this way provide, under certain conditions,
good estimates of the critical points �minima and saddles� of
the effective potential ��q� as a function of a model param-
eter �; this issue is discussed extensively in Refs. 20, 23, 24,
and 26, and we will return to it again in the Discussion
section.

B. First passage time

Suppose that we have a bistable stochastic system. That
is, the effective free energy ��q� has two local
minima27—see Fig. 2. Then an important quantity character-
izing the long-time system dynamics is the mean time for
spontaneous transitions to occur between the stable steady
states. Let qm�qM denote the two stable steady states and let

qu be the unstable state �i.e., local maximum of ��q��. Then
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we define the first passage time for transitions from qm to qM

as 2	e, where 	e is the average time for the system to reach
the unstable steady state qu for the first time given that it
starts at qm. The factor of 2 occurs because once the system
reaches the unstable steady state, half the time it returns to
the original stable steady state qm and the other half of the
time it transitions to qM.

Algorithm �A�–�C� gives a procedure to estimate the ef-
fective potential ��q� by running short simulations only.
Once we have the effective potential, we can compute 	e as
follows:27

	e;p = �
qm

qu

exp����q���
−


q 1

D���
exp�− ������d�dq .

�3.6�

Equation �3.6� can be further simplified if the height of the
potential barrier ���qu�−��qm�� is large compared to the
noise strength. In this case, almost all the weight of the func-
tion exp�−������ is located at �=qm for ��qu, so that the
inner integral is essentially constant for qm�q�qu. There-
fore the limit q in this integral can be replaced by qu, allow-
ing the two integrals to be evaluated separately

	e;p  �
qm

qu

exp����q��dq�
−


qu 1

D�q�
exp�− ���q��dq .

�3.7�

The main contribution of the first integral stems from the
region around qu, and the main contribution from the second
integral stems from the region around qm. Consequently, we
expand ��q� according to

��q�  ��qu� −
1

2
����qu���q − qu�2,

��q�  ��qm� +
1

2
���qm��q − qm�2

for the first and the second integral, respectively.17 When
these expansions are used in Eq. �3.7�, the following result is

FIG. 2. Potential ��q� of the bistable system.
obtained:
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	e;k 
4� exp����qu� − ���qm��

��D�qu� + D�qm������qm�����qu��
, �3.8�

which is the generalization of Kramers formula to the case of
a state-dependent diffusion coefficient.13,17 Formulas �3.6�
and �3.8� are both used in Sec. V B to estimate 	e.

IV. ANALYSIS OF THE MODEL PROBLEM

In this section, we study the behavior of the model given
by Eqs. �2.1�–�2.6�. To provide insight into the problem, we
start by analyzing the deterministic system. In Secs. IV B and
IV C, we introduce two stochastic models that are simplified
versions of the model defined by �2.1�–�2.6�. We use these
models because of the relative ease in performing long-time
stochastic simulations with them; this allows the results from
the equation-free analysis to be validated by direct compari-
sons with Monte Carlo simulations. We will also verify that
the equation-free methods can be applied to the full model.
As discussed below, for this case the long-time Monte Carlo
simulations become computationally very expensive.

A. The deterministic model

To simplify the deterministic analysis, we make the as-
sumption that Eqs. �2.3�–�2.6� are at quasiequilibrium and
derive deterministic rate equations for the protein concentra-
tions. Let x1 and x2 denote the average monomer concentra-
tions of P1 and P2, respectively, and let d1 and d2 denote the
respective dimer concentrations. Also, let o1 and o2 denote
the probabilities that the operators O1 and O2 are not occu-
pied. For the dimerization process the assumption of quasi-
equilibrium implies that

d1 =
k1

k−1
x1

2 and d2 =
k2

k−2
x2

2. �4.1�

Similarly, the quasiequilibrium assumption for the operators
implies that

o1 =
k−o1

k−o1 + ko1d2
and o2 =

k−o2

k−o2 + ko2d1
. �4.2�

The total concentration of P1 is given by y1=x1+2d1. The
total concentration y1 evolves according to the following or-
dinary differential equation:

dy1

dt
= �1o1 + 1�1 − o1� − �1x1, �4.3�

where �1 is the degradation rate of the monomers, and it has
been assumed that dimers are protected from degradation.
Substituting y1=x1+2d1=x1+2�k1 / �k−1��x1

2 into �4.3�, we ob-
tain

�1 + 4
k1

k−1
x1�dx1

dt
= �1o1 + 1�1 − o1� − �1x1.

Finally, using �4.1� and �4.2� produces

dx1

dt
=

1

1 + �1x1
��1

1

1 + �1x2
2 + 1

�1x2
2

1 + �1x2
2 − �1x1� , �4.4�
where the parameters �1 and �1 are defined as follows:
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�1 = 4
k1

k−1
and �1 =

ko1

k−o1

k2

k−2
. �4.5�

Using similar reasoning an analogous equation for x2 can be
derived.

For simplicity, we will present the symmetric case in
which the rate constants for processes involving P1 are iden-
tical to those involving P2. That is, we assume �
�1=�2,
�
�1=�2, �
�1=�2, and �
�1=�2. Moreover, we as-
sume that the production rate is zero if an operator is occu-
pied, i.e., 1=2=0. Making these assumptions, �4.4� simpli-
fies to

dx1

dt
=

1

1 + �x1
� �

1 + �x2
2 − �x1� , �4.6�

and the equation for x2 is obtained by alternating the sub-
scripts in the above equation. Hence, the problem has been
reduced to a system of two equations with four parameters.
Note that the value of � does not influence the steady-state
behavior of the system. In this paper, we fix the values of �
and � to be 7.5�10−4 and 2�10−6, respectively.

The steady-state values of x1 as a function of � are
shown in Fig. 3. In this figure, solid lines denote stable
steady states and dashed lines denote unstable steady states.
For ��1.06 there is a single steady state. At �=1.06 a pitch-
fork bifurcation occurs, and for ��1.06, there exist three
steady states. The steady state with x1=x2 is unstable and the
other two steady states are stable.

Due to separation of time scales, the long-term dynamics
of this problem lie on a lower-dimensional �here one-
dimensional� slow manifold; this suggests that one may be
able to construct an effective one-dimensional dynamical
system describing the long-term evolution of the model on
�near� this slow manifold. In constructing such a reduced
model, an important question even in the simple determinis-
tic case is the choice of the right observable—the variable in
terms of which the long-term dynamics will be expressed.
An extensive discussion of the choice of such a “right ob-
servable” for the deterministic case can be found, for ex-

FIG. 3. The dependence of the steady-state values of x1 on �. The solid lines
denote stable fixed points and the dashed line corresponds to unstable fixed
points. In this figure and throughout the paper �=7.5�10−4 and �=2
�10−6.
ample, in Ref. 28; as discussed there, even if we do not know
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the exact slow variables, any set of variables that param-
etrizes the slow manifold can be practically used to reduce
the system in an equation-free context. For the stochastic
case, a good early illustration and discussion of manifold
parametrization can be found in Ref. 12. Choosing the right
observable is an important issue in the implementation of
equation-free computations and the subject of intense current
research which we will briefly comment on in Sec. VI.

In this paper, and for this example, our equation-free
analysis assumes that the problem can be described in terms
of a single variable. Consequently, it becomes important to
select a good observable that further simplifies the two-
dimensional problem to one dimension. A tempting �and ob-
vious� choice for the one-dimensional observable is the mo-
lecular abundance of P1 �or P2�. However, we also make use
of the symmetric variable defined as the difference in the
protein abundances Q= P1− P2. In terms of the rate equations
the symmetric variable is s=x1−x2. The bifurcation diagram
in terms of s is shown in Fig. 4. The symmetry of the dia-
gram suggests that Q might be a more natural observable
than P1 �which also produces good results, as we will see
below�.

B. Stochastic model I

To start our investigations in the equation-free frame-
work, we constructed a very simple stochastic model of the
system. We use this simple model to benchmark equation-
free computations, since the results can be tested against
Monte Carlo simulations easily. Results for the full system
are also presented below. The simple stochastic model con-
sists only of reactions for the synthesis and degradation of
proteins P1 and P2, but the following effective rate constants
are used:

� �
�

1+�P

1
1+�P1

�

1+�P2
2

P1, �4.7�

FIG. 4. The dependence of steady-state values of the symmetric variable
s=x1−x2 on �.
1
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� �
�

1+�P2

1
1+�P2

�

1+�P1
2

P2. �4.8�

The above reactions are consistent with the deterministic
model but, in general, do not preserve the noise structure of
the full stochastic model.

To simulate the mechanism contained in models �4.7�
and �4.8�, we use the standard Gillespie SSA.5 The results for
different values of the parameter � are plotted in Fig. 5. For
each � we plot the time evolution P1 �left panel� and Q
= P1− P2 �right panel�. We see that for small �, the solution

FIG. 5. Stochastic model I. Plots of P1 and Q= P1− P2 as a function of time
�=7.5�10−4, �=2�10−6, and �=2�10−4.
fluctuates around the stable deterministic steady state with
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relatively small noise amplitude. When �=1.06, the noise
amplitude has increased substantially, which is typical of sto-
chastic systems near a “bifurcation”; the word bifurcation is
put here in quotes to denote that �in contrast to the determin-
istic case� there is no isolated parameter value marking the
onset of bistability—no clear bifurcation point exists for the
stochastic dynamics. Yet one can still claim that a clear bi-
furcation point exists for the critical points of the potential
��q ,�� in the stochastic model; furthermore, depending on
the time horizon of our observation of a stochastic simula-
tion, one may still appear to see an apparent bifurcation point
for its averaged statistics �see the discussion in Refs. 13 and

ifferent values of �. The parameter values used to produce these figures are
for d
26�. If � is increased further, then Q=0 is no longer a stable
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steady state and the system clearly shows bistability. All
plots are computed for the same time interval �0,15�106�.
For �=1.25 the steady states are sufficiently stable so that no
transitions occurred in this time interval �data not shown�.
Therefore, for this case, determining the steady-state prob-
ability distribution from long-term Monte Carlo simulations
would be very time consuming.

C. Stochastic model II

Stochastic model I considers only two variables P1 and
P2. Here, we introduce a stochastic model that also takes into
account the biochemical states of the operators, while main-
taining the assumption that dimerization reactions �2.3� and
�2.4� are at equilibrium. That is, we consider the four vari-
ables P1, P2, O1, and O2. The model is defined in terms of
the following reaction steps:

� �
�

1+�P1

�
1+�P1

O1

P1, �4.9�

� �
�

1+�P2

�
1+�P2

O2

P2, �4.10�

“O1 = 0” �
K�P2

2

K

“O1 = 1”, �4.11�

“O2 = 0” �
K�P1

2

K

“O2 = 1”, �4.12�

and contains an extra parameter, K
k−o1=k−o2. Note that
“O1=0” means that the operator O1 has a dimer of P2 bound
to it and therefore is “off” and “O1=1” means that the op-
erator O1 is empty and therefore is “on.” The same is true for
O2. This implies that the random variables O1 and O2 are
binary, whereas the variables P1 and P2 can take on any
non-negative integer value. Stochastic model I is recovered
from stochastic model II in the limit K→
. We thus expect
the models to produce similar results for large values of K.

Again, we use the standard Gillespie SSA �Ref. 5� to
simulate model �4.9�–�4.12�. The results for different values
of K for �=1.14 are plotted in Fig. 6. Comparing Fig. 6 and
corresponding panel from Fig. 5, we can confirm that sto-
chastic model II produces the same behavior as stochastic
model I for large K. However, in general, different values of
K can change the bifurcation structure of the system and
affect the first passage times between the two stable steady
states of the bistable system.4

Because stochastic models I and II do not explicitly take
into account dimerization, which in general is a fast process,
they run much more efficiently than the full model given by
�2.1�–�2.6�. However, they do not in general preserve the
noise structure of the full system. In the next section we use
all three models to highlight the computational features �and

potential benefits� of equation-free analysis.
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V. RESULTS OF EQUATION-FREE ANALYSIS

In our approach, we want to study the stochastic models
presented above using only short bursts of appropriately ini-
tialized stochastic simulations; the goal is to design these
bursts and process their results so as to determine long-time
properties of the system �e.g., steady-state distributions, bi-
furcations, and mean first passage times� efficiently. We use
�and compare� the different algorithms discussed in Sec. III.

A. The effective potential and steady-state
distribution

In this section, we use equation-free analysis to evaluate
the effective potential �an “effective free energy”� and the
steady-state distribution for stochastic models I and II and
the full system. We start with stochastic model I. First, we
will consider the slow variable Q
 P1− P2 and the fast
�slaved� variable R
 P1+ P2. Initially the preparatory step
�A� of the algorithm presented in Sec. III was done using the
method outlined in �1�, i.e., we used the conditional mean
�R �Q=q	 to initialize the computations in step �B�. A good
approximation to this average can be found using the deter-
ministic equations, and this was the number used in our pre-
liminary computations to initialize the simulations in step
�B�. That is, for a given Q, we initialized all realizations in
step �B� with the same value of R. Then we chose �t equal to
100 time steps of the Gillespie SSA. Note that this implies
that the actual value of �t varies for each realization and
depends on the values of the rate constants. However, the
computer �CPU� time is the same for all the results presented
for this case. We averaged over 2�106 of realizations in part
�B�. Hence, we used 200�106 realizations for a given Q.

The equation-free results for the effective potential for
different values of � are given in Fig. 7. These results are in
good agreement with the long-term stochastic simulations
presented in Sec. IV B. The potential has a single minimum
��1.06. As � is increased the potential broadens implying
that the system becomes “noisier.” When ��1.06, the po-
tential shows two local minima and the system is bistable.

Since we are using a very simple stochastic model, it is
not computationally expensive to compute the steady-state
distributions directly by long-time simulations. We used the
Gillespie SSA to generate 1011 time steps of the stochastic
process and recorded the value of Q at each time step. The
resulting time series was binned to produce the steady-state
distribution of the system. Figure 8 presents a comparison of
the two computed steady-state distributions. The results ob-
tained by long-time simulations are shown as histograms and
the steady-state distributions computed from the effective
potential C exp�−���Q�� are given by the thick lines. We
see that equation-free analysis gives very good results.

In Sec. III, we introduced three possible methods, �1�–
�3�, to perform the preparatory step �A� �typically called the
“lifting” step in the equation-free framework�. We have
shown that approach �1� produces good results for stochastic
model I. Since �1� works, there is no need to improve the
results by considering �2�. Instead, we discuss approach �3�.
In this approach given Q=q we run the simulations for a

short time �t and record the value of R. Then we reset Q
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=q but leave R unchanged. We repeat this procedure many
times and approximate the conditional density P�r �Q=q� as
a histogram of recorded values of R. In our simulations, we
chose �t equal to one SSA step. To compute the conditional
density P�r �Q=q�, we used 11�106 SSA steps. First we let
the system run for a million time steps to remove the tran-
sient in R, and then used the remaining 10�106 time steps to
compute the conditional density. In part �B� of the algorithm,
we used �t equal to 100 SSA time steps and we averaged
over 2�106 of realizations, similarly as before. Thus, for
each Q, we used 11�106 SSA time steps in step �3� and
200�106 SSA time steps in step �B� which means that step
�3� did not significantly change the computational cost of the

FIG. 6. Stochastic model II. Plots of P1 and Q= P1− P2 as a function of time
same as in Fig. 5.
program.
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The graphs of P�r �Q=q� for �=0.98 and �=1.14 are
given in Fig. 9. The left panel in these figures shows
P�r �Q=q� for five values of Q. The right panels show
P�r �Q=q� as a function of r and q. Next, we can use the
computed conditional density P�r �Q=q� to initialize R in
step �B�. Doing this produces results which are virtually
identical to results from Fig. 8 �graphs not shown�.

We now repeat the previous computations using the
more complicated stochastic model II. The results are shown
in Figs. 10 and 11. In Fig. 10, we choose �=1.14 and com-
pute the steady-state distribution for Q for three values of K.
The results are compared with direct simulations of stochas-

ifferent values of K and �=1.14. The other model parameter values are the
for d
tic model II and with each other. The results from Fig. 10 can

 AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



084106-10 Erban et al. J. Chem. Phys. 124, 084106 �2006�
also be compared to the corresponding plot with �=1.14 in
Fig. 8, which can be viewed as the limit K→
. As can be
seen, the results given by stochastic model II for K=10 are
already in good agreement with the corresponding results
obtained by stochastic model I. Figure 11 shows similar re-
sults for �=1.20. Again, we obtained accurate results using
the equation-free method.

Up to now we have used the symmetric variable Q

 P1− P2 as our observable. However, we often do not have
a priori knowledge of the slow variable or, more generally,
of a good observable to parametrize the long-time system
dynamics. To investigate the sensitivity of our results to the
choice of observable, we repeated the computations on sto-
chastic model I using P1 instead of Q. To use P1 as our
observable, we modify step �1� so that we simply initialize
P2 using P2=� / ��+��P1

2�. The numerical results for differ-
ent values of � are given in Fig. 12. Again good agreement is
seen between the equation-free method and the Monte Carlo
simulations. Because P1 has both a slow and a fast compo-
nent, this result illustrates that equation-free methods may be
attempted even when the slow variable is unknown. An ex-
tensive discussion of this point in a deterministic context can
be found in Ref. 28: one does not necessarily need the cor-
rect slow variable—one needs an observable that param-
etrizes the slow manifold, a quantity in terms of which the
slow manifold can be expressed as the graph of a function.

Encouraged by the success of our computational frame-

FIG. 7. The effective free energy � for different values of � computed by
our procedure. The other model parameter values are the same as in Fig. 5.
work for the simple stochastic models I and II considered
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above, we next investigated how well these methods would
work on the full system described by Eqs. �2.1�–�2.6�. We
first performed long-time Monte Carlo simulations using
BIONETS.14 A two-dimensional histogram for the total protein

FIG. 8. Comparison of steady-state distributions obtained from the effective
free energies shown in Fig. 7 �thick lines� with histograms obtained by
long-time simulations.
numbers T1= P1+2P1P1 and T2= P2+2P2P2 is shown in Fig.
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13�a�. This simulation consisted of approximately 1013

Gillespie SSA steps and took over 500 total CPU hours �800
runs distributed over 18 CPUs�. Each run resulted in ap-
proximately 150 transitions between the stable steady states.
Therefore, Fig. 13�a� is a result of roughly 120 000 transi-
tions. This number of transitions is probably excessive for
most cases. However, if we reduce this number by a factor of
100, so that on the order of 1000 transitions are used to
construct the distribution, it would still require 1011 Gillespie
SSA steps and 5 h of CPU time. The dashed curve in Fig.
13�b� is the projection of the histogram shown in Fig. 13�a�
onto the T1 axis. The parameter values used to compute Fig.
13 are �1=�2=1.14, �1=�2=7.5�10−4, �1=�2=0, k1=k2

=5�10−4, k−1=k−2=1, ko1=ko2=0.004, and k−o1=k−o2=0.1.
These values are consistent with the parameter values K
=0.1, �=7.5�10−4, and �=2�10−6 used in stochastic mod-
els I and II. Note that Fig. 13�b� is a plot of the total protein
number, whereas the distributions shown in Fig. 12 are for
the monomer number. Therefore these two figures are not
directly comparable.

We next performed equation-free computations for the
system. As our single observable, Q, we used the total pro-
tein number T1, because this is a quantity that can be mea-
sured using single cell fluorescent techniques. We used a
slightly modified version of step �3� to compute the condi-
tional density P�r �T1= t1�. For a given value of T1, we set the

FIG. 9. �Color� Conditional distribution P�r �Q=q� for stochastic model I. P
show P�r �Q=q� as a function of r and q.
rate constants for synthesis and degradation of this protein
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equal to zero. We then ran the simulations for a time of 1
�105 to remove any transients. Next still keeping T1 fixed,
10 000 samples of the other variables were collected at
evenly distributed intervals over a time period of 2�105 and
used to generate the conditional density. A time step of �t
=15 was used in step �B� of the algorithm. To compute the
steady-state distribution, polynomials were fitted to the aver-
age velocity and effective diffusion coefficient computed
from the equation-free analysis and then used to compute the
effective free energy. The red solid curve shown in Fig. 13�b�
is the result of the equation-free analysis. Very good agree-
ment between the equation-free method and Monte Carlo
simulation is seen. The simulations used to produce the
equation-free result consisted of approximately 1010

Gillespie SSA steps and took less than an hour of CPU time.
Note that in the equation-free method the number of
Gillespie steps needed to compute the effective free energy is
independent of the parameter �. In contrast, as � is increased
the average transition time between the stable steady states
grows exponentially �see Table I�. Therefore, using direct
simulation to compute the steady-state distribution for large
values of � quickly becomes impractical. Our investigations
into these methods revealed that whereas the drift V�q� is
robust to changes in �t, the effective diffusion coefficient
D�q� is quite sensitive and needs to be treated with care.
Also, because of the exponential in the integral for the effec-

s on the left show P�r �Q=q� for selected values of q. Pictures on the right
icture
tive potential, small changes in the average drift or effective
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diffusion coefficient can have large effects on the steady-
state distribution. Therefore, it is important to average over
sufficiently many realizations to ensure convergence of aver-
age drift and effective diffusion coefficient. Better estimation
techniques, such as those developed by Aït-Sahalia using
maximum likelihood,29 should be incorporated in the data-
processing step of the algorithms. Even with these caveats,
the results presented in this section demonstrate the feasibil-
ity and high potential of equation-free methods for analyzing
stochastic models of genetic networks.

B. First passage time

When � is sufficiently large the system is bistable. An
important characterization of bistable systems is the average
time for noise-induced transitions between the stable states.
Here we make use of the definition of the first passage time
from Sec. III B. For the results presented in this section we

FIG. 10. Comparison of steady-state distributions from stochastic model II
K=10 and �=1.14. The remaining three panels compare these results �thic
simulation �histograms�. The other model parameter values are the same as
Downloaded 28 May 2008 to 140.180.2.191. Redistribution subject to
use Q= P1− P2 as our observable and stochastic model I. The
system is bistable for ��1.06. Let the deterministic stable
steady states of P1 be denoted as pm and pM with pm� pM.
Because of the symmetry of our problem, pm and pM are also
the stable steady states of P2. Let the random variable Te be
defined as the first time when P1= P2 given the initial condi-
tions P1= pm and P2= pM. In terms of Q, this means that Te

denotes the time to reach Q=0 when the process starts with
Q equal to the negative steady state qm
 pm− pM. Let 	e

denote the average of Te. Then, direct Monte Carlo simula-
tions can be used to compute the value of 	e. The results of
such simulations for three different values of � are presented
in Table I.

As expected, the computational time needed to compute
the mean first passage time increases rapidly with �. In Sec.
III B, we introduced two formulas �3.6� and �3.8� to compute
	e. Both formulas make use of the effective free energy com-

top left panel are results from the equation-free analysis for K=0.1, K=1,
es� to the steady-state distribution computed from long-time Monte Carlo
g. 5.

FIG. 11. Stochastic model II. Com-
parison of steady-state distributions
obtained by equation-free analysis
�thick line� with histograms obtained
by long-time stochastic simulations. In
this figure �=1.2 and K=0.1 in the left
panel and K=1 in the right. The other
model parameter values are the same
as in Fig. 5.
. The
k lin
in Fi
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puted by the equation-free algorithm. These potentials for
�=1.14, �=1.20, and �=1.25 are given in Fig. 7. Conse-
quently, we can compare the results obtained by the long
simulations with the results found from formulas �3.6� and
�3.8� for 	e;p and 	e;k, respectively. The results are shown in
Table II.

Not surprisingly, the results given by 	e;p are better than
results given by the Kramers approximation 	e;k. However,
both methods produce results that are within a factor of 2 of
the waiting times estimated from Monte Carlo simulations.
As � becomes large the Monte Carlo simulations become
computationally expensive. Therefore only 250 realizations
were used to estimate the mean first passage time for �
=1.25, and we expect that the discrepancy between the
Monte Carlo simulations and equation-free analysis for this
case is due to finite sampling errors. Initializing the simula-

FIG. 13. �Color� �a� The steady-state distribution for the total protein n
�2.1�–�2.6�. �b� The projection of the two-dimensional �2D� distribution onto

analysis. The model parameter values are given in the text.
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tion at conditions that are rarely visited by the direct simu-
lation itself constitutes a form of bias; this bias is designed to
give faster computational estimates of the effective potential
and—through this—of the first passage times. Clearly, this
approach hinges on knowledge of a good observable and, in
principle, does not depend strongly on the value of the pa-
rameter �; therefore, the larger the parameter � the higher the
computational speedup in the first passage time estimation
that will result. A quantitative study of this speedup is under-
way and will be reported elsewhere; it does not lie within the
scope of this paper. We stress, however, that �as in
molecular-dynamics simulations� knowledge of a good ob-
servable �a good “reaction coordinate”� is crucial for the suc-
cess of the approach.

Note that formula 	e;k requires estimates of the second
derivative of the potential at points qu and qm. To do this, we

FIG. 12. Comparison of steady-state
distributions using the variable P1 as
the observable for various values of �.
The other model parameter values are
the same as in Fig. 5. Again, the thick
lines are the results of equation-free
analysis and the histograms are ob-
tained by the long-time stochastic
simulations.

rs computed from long-time Monte Carlo simulations of the full model

1 axis �dashed curve�. The red solid curve is the result of the equation-free

umbe

the T
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fitted ���q� locally to a polynomial and used the derivatives
of the polynomial at the required points; once again,
maximum-likelihood techniques �e.g., Ref. 29� should be
used for better results. The formula for 	e;p requires the
evaluation of an indefinite integral. The integral was approxi-
mated by considering only a finite interval that neglected
contributions from the region of sufficiently small q where
the potential � is very large.

C. Bifurcations

In this section, our goal is to run the simulations for
short times only and compute a form of “stochastic bifurca-
tion diagram” using continuation methods, as an extension of
the deterministic bifurcation computations. We use stochastic
model I and study the dependence of the “steady states” on
�; the steady states we report are the fixed points of the
algorithm from Sec. III A with the conditional density
P�R �Q=q� approximated by the Dirac delta function in �i�
and �ii�, similar to approach �1� from Sec. III. Numerical
results are given in Fig. 14. For comparison we also plot the
steady states of the corresponding deterministic equation
�compare with Fig. 4�. The plot in Fig. 14 was computed by
initializing on different branches far from the bifurcation
point and continuing from these different initializations �our
simple arclength continuation algorithm did not include a
“pitchfork detection” component�.

The accuracy of the numerical results depends on several
factors: the estimation technique for the Jacobian elements,
the tolerance of the error for Newton-Raphson iterations, the
number of realizations which are used to evaluate F, the time
interval �t, and the steepness of the underlying potential �.
As can be seen in Fig. 14, stochasticity along with all these
numerical factors have slightly perturbed the pitchfork bifur-
cation; this could be exacerbated by our choice of �symmet-
ric or asymmetric� observable. It is easy to follow any branch
of steady states far from the bifurcation point. For obvious
reasons this becomes more complicated when we are close to
the “bifurcation point” at �=1.06. The main problem is that
the potential becomes “flat” close to the bifurcation point—
see Fig. 7. One way to improve the results is to adaptively
change the number of realizations in �ii�. That is, if the

TABLE I. The mean first passage time computed f
transitions. The results are expressed in the form ��sa

� pm pM qm= pm− p

1.14 481.1 1038.6 −557.5
1.20 425.8 1174.2 −748.4
1.25 392.4 1274.3 −881.9

TABLE II. Comparison of the mean first passage time computed from
equation-free analysis with long-time stochastic simulations.

� 	e from Table I 	e;p given by �3.6� 	e;k given by �3.7�

1.14 7.0�105 6.1�105 1.3�106

1.20 1.6�107 1.4�107 2.6�107

1.25 1.0�109 6.7�108 1.2�109
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Newton-Raphson iterations of �3.5� do not converge to a
desired tolerance, then more realizations are added. Another
approach is to estimate directly a local polynomial model of
the underlying diffusion process from discrete SSA data us-
ing maximum-likelihood tools and then search for the bifur-
cations of the critical points of the effective potential. In-
deed, one can plot the zeros of the estimated drift, or—in the
case of a state-dependent diffusion coefficient—one can cor-
rect them to report the maxima of the steady-state
distribution;19,20 both of these are good candidate bifurcation
diagrams for the stochastic case. When the potential is steep
and the equilibrium is “less noisy” it is not necessary to use
many realizations; the relation between computational effort
�in terms of number of replicas, simulation time horizon, and
estimation method� and resulting accuracy is, again, a sub-
ject of current investigation beyond the scope of this paper.

Finally, the results using P1 instead of Q as the observ-
able are shown in Fig. 15. In this case, the asymmetry of our
observable and the perturbation it causes on the initialization
process make the perturbation of the pitchfork bifurcation
stronger. We used symmetric rate constants in our model as a
means to simplify the system by reducing the number of
model parameters. However, biological systems are very un-
likely to possess such symmetries, in which case the artificial
broken symmetry seen in Fig. 15 that results from using a
numerical method that does not preserve this symmetry
would not be an issue. Of course, the results also depend on
the initialization procedure, our estimation technique, the er-
ror tolerance, the number of realizations, the length of time
step �t as well as the type of continuation algorithm we are
using �here we used a very simple one, without bifurcation
detection, in order to demonstrate what is possible�. Accurate
bifurcation detection depends on accurate Jacobians and
even higher derivatives; estimating these from dynamic �and

long-time stochastic simulations, averaging over N
mean�± �sample variance� /�N�.

Computed 	e from simulations N

7.0�105±6.7�103 10 000
1.6�107±1.6�105 10 000
1.0�109±6.3�107 250

FIG. 14. A plot of the steady states obtained by equation-free analysis �3.5�
�circles�. Also shown are the deterministic steady states from Fig. 4 �solid
rom
mple

M

line�.
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noisy� data is notoriously difficult. While conceptually we do
have the tools to “hone in” the more accurate detection of
bifurcation points, careful quantitative work is necessary to
pin down the trade-offs between computational effort, model
estimation accuracy, and bifurcation point estimation accu-
racy.

VI. DISCUSSION

In this paper we discussed and illustrated the use of cer-
tain equation-free numerical techniques that have the poten-
tial to accelerate the computer-assisted analysis of stochastic
models of regulatory networks. There is a clear current need
for accelerating such simulations; even for modestly com-
plex regulatory networks, stochastic models rapidly become
computationally expensive. Computational acceleration is
usually based on model reduction; theoretical methods for
stochastic model reduction that take advantage of a separa-
tion of time scales are the focus of intense current
research.4,6–8,30,38 As we discussed in the Introduction, many
important gene regulatory networks do satisfy this assump-
tion of a separation of time scales because synthesis and
degradation of new proteins and transcripts usually occur on
a slower time scale than processes that change the chemical
state of proteins. Analytical model reduction techniques as-
sume that the fast variables are in quasisteady state with
respect to the slow variables and use the quasi-steady-state
distributions conditioned on the slow variables to eliminate
the fast variables by averaging. These methods have been
successfully applied to simple models, but the theory is not
as well established as the deterministic counterpart. Having
an explicit model lies often at the basis of such stochastic
reduction methods.

In the equation-free approach many of the same ele-
ments �separation of time scales and approximation of con-
ditional quasisteady distributions� also underpin computa-
tional efficiency; but the basic premise is that the model is
available in the form of a “black box” simulation code. We
do not try to first reduce and then simulate the reduced sur-
rogate; we try to design the smallest number of “intelligent”
short computational experiments with the full stochastic

FIG. 15. Plot of the steady states obtained by using P1 as the observable
�circles�. Again for comparison the deterministic case is shown as the solid
line.
model to find the quantities of interest, whether these are
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steady-state probability distributions, their maxima, or tran-
sition rates in the bistable case. In that sense, the approaches
we described here do not hinge upon the “inner,” detailed
simulator as being a Gillespie SSA one—the methods are
equally applicable to any inner simulator, stochastic or deter-
ministic, as long as the main assumption of a low-
dimensional effective stochastic model is a good one for the
long-term system dynamics. Indeed, if another reduction
method can be used to produce a good approximate dynamic
simulator, our algorithms can be “wrapped” around this sur-
rogate simulator rather than the full model for further accel-
eration.

Another important point has to do with the type of com-
putation we are interested in—do we want to accelerate the
direct simulation of the model, or do we want to accelerate
the computation of certain features of its long-term dynamics
�e.g., of the maxima of the steady-state distribution�? These
latter quantities can also be obtained from long-term direct
simulation, but one of the points that we want to stress is that
we can link direct simulation to different numerical algo-
rithms �such as contraction mappings and continuation meth-
ods� to obtain these quantities, often faster than with direct
simulation alone. In the same way that bifurcation diagrams
for dynamical systems are usually not computed through di-
rect ODE integration, but through bifurcation algorithms, the
parametric dependence of the long-term dynamics of sto-
chastic models does not have to be computed through long-
time direct simulation only. This “alternative” acceleration,
not through accelerating the direct simulation itself, but
through linking it to different numerical algorithms, lies at
the basis of the equation-free framework.

Having said this, we briefly mention that equation-free
methods for accelerating the direct simulation itself also ex-
ist. Coarse projective integration which uses short bursts of
direct simulation to estimate time derivatives of evolving
probability densities and then passes them to standard nu-
merical integration algorithms, has been successfully used in
many contexts.9–11,31 Coarse-projective integration has a
strong relation to the direct simulation acceleration methods
in Ref. 32; it has not been discussed in this paper, because
we chose to focus on very long-term features of the network
dynamics; it might interest the reader that the method can be
used to also integrate backward in time and solve “effective
boundary-value problems” to find “coarse” limit cycles.33

In the equation-free methods for analyzing stochastic
models of gene regulation that we discussed in this paper, we
have tried to circumvent the difficulties encountered by di-
rect simulation �in this case SSA� through the design of short
bursts of appropriately initialized computational experiments
with the full simulator. In a sense, we “resign ourselves” to
the fact that the direct simulator is expensive; we ask what is
the shortest amount of running of this expensive direct simu-
lator in order to obtain the quantities we are interested in.
The “design of experiments” protocols are templated on tra-
ditional continuum numerical methods, such as the fixed-
point and continuation algorithms to compute bifurcation
points, or quadrature to estimate Kramers formula. The only
difference is that the quantities �residuals, actions of Jacobi-

ans, and values of the integrand� that are required for nu-
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merical computation are not given by a closed formula, but
rather through direct numerical simulation of the full model
and estimation. We reiterate once more that these techniques
can be wrapped around the full direct simulator, or our best
available reduction of it, without change.

Knowing appropriate coarse-grained observables �the
variables in terms of which the unavailable effective model
would be written� is an important feature of the algorithms.
Extensive experience with the problem, intuition, or analyti-
cal work may often suggest such observables; we did take
advantage of such knowledge in this paper. We did already
demonstrate an important point: more than one observables
are capable of doing a good job as the parametrizing vari-
ables in an equation-free context; one does not need to know
the exact slow variables. This issue is discussed extensively
for the deterministic context in Ref. 28. It is, however, im-
portant to note that algorithms for the detection of low di-
mensionality in high-dimensional data can be vital in sug-
gesting such observables from simulations. Principal
component analysis is an established linear method for the
detection of appropriate lower-order observables from simu-
lation data; numerically estimated eigenmodes of the prob-
lem may also provide good observables �see the discussion
in Ref. 12 about estimating gaps between eigenvalues and
using them to decide whether we should include more ob-
servables as independent variables�. There are, however,
some important developments in this area: the recent use of
harmonic analysis �geometric diffusion� on graphs con-
structed from high-dimensional data shows great promise in
detecting good observables �reaction coordinates� for com-
plex, high-dimensional systems.34–36 This “variable-free” ap-
proach can be naturally linked to equation-free computation
�one designs computational experiments both to detect the
appropriate observables and to do computations with
them�;34 we are currently working on demonstrating this link
for gene regulatory network modeling.

It is interesting to observe that the dimensionality of the
fine scale model does not, in principle, affect the complexity
of the equation-free protocols; what is important is the di-
mension of the effective free-energy surface, and not how
many variables the detailed model contains. This is analo-
gous to the dimensionality of normal forms close to
bifurcations—it is the number of “slow eigenvalues” that
matter, and not the dimensionality of the problem in which
the bifurcation occurs. Similarly, what is important here is
the number of coarse variables �one in our case, both for the
detailed and the simplified models� and not the detailed
model dimension.

It is clear that, in certain cases, an equation-free compu-
tational approach is expected to have advantages over direct
simulation. For steep potentials and low noise, for example,
the way equation-free computation uses a good observable to
bias the simulation will sample the effective potential and
give a good estimate of the transition rates much faster than
direct simulation. Also, parametric analysis methods should
be able to explore parametric transitions faster and more sys-
tematically than direct simulation, in analogy with the use of
bifurcation techniques rather than direct simulation in deter-

ministic dynamical systems �e.g., by writing augmented al-
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gorithms that converge on marginally stable or unstable so-
lutions�. The complexity of the computation depends
crucially on the dimensionality of the unavailable reduced
model, and not so crucially on the dimensionality of the de-
tailed, full model. We are currently working on the quantifi-
cation of these computational benefits; this work is compli-
cated by the fact that—lacking explicit formulas from which
to obtain derivative information—errors must be computed
online through a posteriori estimates.

This brings us to a final, yet vital issue: estimation.
Given the noisy nature of the data, estimating the numerical
quantities of interest lies at the heart of the accuracy �and
thus the viability� of the computation. For our gene net-
works, these quantities included the effective potential ��q�
and the effective diffusion coefficient D�q�. Preliminary in-
vestigations revealed that the effective diffusion coefficient
D�q� is quite sensitive to the time step �t and needs to be
treated with care. Also, small changes in the average velocity
or effective diffusion coefficient can have relatively large
effects on the steady-state distribution. Even though some
computations are “embarrassingly parallel” �one short, fine
scale realization per processor, running independently� vari-
ance reduction becomes an important feature �see, e.g., Ref.
37�. Maximum-likelihood estimation techniques �e.g., Ref.
29� take the place of simple formulas such as �3.2� and �3.3�;
one can envision certain hypothesis testing computations �is
our model locally well approximated by a diffusion process?�
becoming part of the overall computational scheme. Until
these elements, and their computational cost, are analyzed
and tested, there will be no firm guarantees for the compu-
tational efficiency of equation-free methods. Yet, even with
these caveats, as we computationally demonstrated in this
paper, we believe that the equation-free framework provides
a promising approach to gene regulatory network modeling,
alternative to long-direct simulation. It links directly with
powerful and tested traditional continuum numerical algo-
rithms �such as numerical integration, fixed-point algorithms,
and matrix-free iterative linear algebra� and with system
theory techniques such as filtering and estimation. These
techniques are, in some sense, “off the shelf” and do not
need to be redeveloped. In our opinion, it is the linking of
equation-free techniques with novel data reduction/clustering
techniques �such as the use of the graph Laplacian to detect
good reaction coordinates34� that holds the most promise in
the computational study of complicated stochastic systems in
general and of gene regulatory networks and their models in
particular.

Finally, we return to the important issue of the efficiency
of the equation-free computations. We have not touched this
issue much in this paper—we had the luxury to be able to
use enough brute force SSA time steps to obtain accurate
results, to be compared with those of equation-free methods.
Decreasing the number of SSA time steps/number of realiza-
tions of the stochastic process, we will increase the error of
computations. For example, let us consider the problem from
Fig. 11 �panel on the right�. Let us define the error of the
long-time or equation-free computations as the L1 norm of
the difference between the computed steady-state distribution

and the exact steady-state distribution which can be obtained
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by using a very long stochastic simulation �we used 240 SSA
time steps�. To get the error of long-time stochastic simula-
tions below 10%, we found out that we need about 232

=4.3�109 SSA time steps. On the other hand, we can
achieve an error of 6% through equation-free computation
using only 2.4�108 time steps. So, the tenfold gain of the
method can be seen for the simulation of the problem from
Fig. 11 �panel on the right�.

In general, the computational efficiency of equation-free
methods depends both on the model under consideration
�e.g., rate constants of the stochastic model� and on “numeri-
cal” parameters associated with the approach �e.g., discreti-
zation of the effective potential, number of realizations for
variance reduction, estimation technique, and quality of the
random number generator�. It also depends on the type of
computational task we are considering �equilibrium distribu-
tion computation, escape time computation, and optimal
transition path computation�. A careful study of these issues
is beyond the scope of this paper and the subject of ongoing
research. It is clear that in the presence of high barriers be-
tween deep effective wells, the approach we have discussed
has the potential to significantly accelerate the computation
of macroscopic quantities of interest. We believe that linking
this approach with parametric dependence analysis �along
the lines of the coarse-grained bifurcation algorithms dis-
cussed here� holds additional promise for the use of
equation-free methods.
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